Auteurs : Griffin JB, Lokomba V, Landis SH, Thorp JM Jr, Herring AH, Tshefu AK, Rogerson SJ, Meshnick SR.
Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, M
Malar J. 2012 Sep 10;11:319
BACKGROUND: During early pregnancy, the placenta develops to meet the metabolic demands of the foetus. The objective of this analysis was to examine the effect of malaria parasitaemia prior to 20 weeks’ gestation on subsequent changes in uterine and umbilical artery blood flow and intrauterine growth restriction.
METHODS: Data were analysed from 548 antenatal visits after 20 weeks’ gestation of 128 women, which included foetal biometric measures and interrogation of uterine and umbilical artery blood flow. Linear mixed effect models estimated the effect of early pregnancy malaria parasitaemia on uterine and umbilical artery resistance indices. Log-binomial models with generalized estimating equations estimated the effect of early pregnancy malaria parasitaemia on the risk of intrauterine growth restriction.
RESULTS: There were differential effects of early pregnancy malaria parasitaemia on uterine artery resistance by nutritional status, with decreased uterine artery resistance among nourished women with early pregnancy malaria and increased uterine artery resistance among undernourished women with early pregnancy malaria. Among primigravidae, early pregnancy malaria parasitaemia decreased umbilical artery resistance in the late third trimester, likely reflecting adaptive villous angiogenesis. In fully adjusted models, primigravidae with early pregnancy malaria parasitaemia had 3.6 times the risk of subsequent intrauterine growth restriction (95% CI: 2.1, 6.2) compared to the referent group of multigravidae with no early pregnancy malaria parasitaemia.
CONCLUSIONS: Early pregnancy malaria parasitaemia affects uterine and umbilical artery blood flow, possibly due to alterations in placentation and angiogenesis, respectively. Among primigravidae, early pregnancy malaria parasitaemia increases the risk of intrauterine growth restriction. The findings support the initiation of malaria parasitaemia prevention and control efforts earlier in pregnancy.